Linear Algebra
 [KOMS120301] - 2023/2024

12.3 - Fundamental spaces: row, column, and null spaces

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 12 (November 2023)

[^0]
Row vectors and column vectors

Given an $m \times n$ matrix A :

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots a_{m n} &
\end{array}\right]
$$

- Row vector: vector formed from a row of A
- Column vector: vector formed from a column of A

Row vectors and column vectors

The row vectors of A are:

$$
\begin{aligned}
\mathbf{r}_{1} & =\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right] \\
\mathbf{r}_{2} & =\left[\begin{array}{llll}
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right] \\
\vdots & = \\
\mathbf{r}_{m} & =\left[\begin{array}{llll}
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
\end{aligned}
$$

The column vectors of A are:

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \ldots, \mathbf{c}_{1}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

Let A be an $(m \times n)$ matrix.

- The subspace of \mathbb{R}^{n} formed by row vectors of A is called row space of matrix A.
- Subspace of \mathbb{R}^{m} formed by column vectors of A is called column space of matrix A.
- The solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ (which is a subspace of \mathbb{R}^{n}) is called null space of matrix A.

Relationship

Question 1. What relationships exist among the solutions of a linear system $A \mathbf{x}=\mathbf{b}$ and the row space, column space, and null space of the coefficient matrix A ?

Question 2. What relationships exist among the row space, column space, and null space of a matrix?

Column space

Consider the system $A \mathbf{x}=\mathbf{b}$ where:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots a_{m n} &
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Let $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ be the column vectors of A. The system can be written as:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\Leftrightarrow x_{1} \mathbf{c}_{1}+x_{2} \mathbf{c}_{2}+\cdots+x_{n} \mathbf{c}_{n} & =\mathbf{b}
\end{aligned}
$$

Hence, the system has a solution if and only if \mathbf{b} can be expressed as a linear combination of the column vectors of A.

Theorem

A system of linear equations $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Example of column space

Given a linear system $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 2 & -3 \\
2 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & -9 & -3
\end{array}\right]
$$

Show that \mathbf{b} is in the column space of A by expressing it as a linear combination of the column vectors of A.

Solution:

Steps:

- Solve the system by Gaussian elimination:

$$
x_{1}=2, x_{2}=-1, x_{3}=3
$$

- This yields:

$$
2\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-9 \\
-3
\end{array}\right]
$$

i.e.,

$$
x_{1} \mathbf{c}_{1}+x_{2} \mathbf{c}_{2}+x_{3} \mathbf{c}_{3}=\mathbf{b}
$$

Null space

Given matrix:

$$
A=\left[\begin{array}{ccccc}
2 & 2 & -1 & 0 & 1 \\
-1 & 1 & 2 & -3 & 1 \\
1 & 1 & -2 & 0 & -1
\end{array}\right]
$$

To determine the null space of A, solve the homogeneous linear system $A \mathbf{x}=\mathbf{0}$:

$$
A=\left[\begin{array}{ccccc}
2 & 2 & -1 & 0 & 1 \\
-1 & 1 & 2 & -3 & 1 \\
1 & 1 & -2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solving the system by Gauss elimination, we obtain:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-s-t \\
s \\
-t \\
0 \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]
$$

The solution of the system can be written in matrix equation:

$$
\mathbf{x}=s \mathbf{v}_{1}+t \mathbf{v}_{2}
$$

where $s, t \in \mathbb{R}, \mathbf{v}_{1}=(-1,1,0,0,0)$ and $\mathbf{v}_{2}=(-1,0,-1,0,1)$,

$$
8 / 28
$$

(C) Dewi Sintiari/CS Undiksha

Determine the basis of null space

Properties of row/column space and null space

Theorem
Elementary row operations do not change the row space of a matrix.

Theorem
Elementary row operations do not change the null space of a matrix.

How to determine the basis of row space, column space, and null space?

Let A be an $(m \times n)$ matrix. How to determine the basis of row space, column space, and null space of matrix A ?

1. Perform elementary row operations to obtain the reduced-row echelon form matrix R;
2. The basis of the row space of A in all row vectors that contain leading 1^{*} of matrix R;
3. The basis of column space of A is all column vectors of matrix A that correspond with the column vector of matrix R that contains leading 1.
[^1]
Intuition behind the algorithm

Example 1: determining the basis for row space and column space
Determine the basis of row space, column space, and null space of matrix:

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right]
$$

Solution:

$$
\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right] \sim E R O \sim\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

The basis of the row space is:

$$
\left.\begin{array}{l}
\mathbf{r}_{1}=\left[\begin{array}{llllll}
1 & -3 & 4 & -2 & 5 & 4
\end{array}\right] \\
\mathbf{r}_{2}=\left[\begin{array}{llllll}
0 & 0 & 1 & 3 & -2 & -6
\end{array}\right] \\
\mathbf{r}_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{1 3}^{0} / 28
\end{array}\right] \text { © Devi Sintiari/cs Undiksha }
$$

Example 1 (cont.)

$$
\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right] \leftrightarrow\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

So, the basis of the column space is:

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right] \quad \mathbf{c}_{2}=\left[\begin{array}{c}
4 \\
9 \\
9 \\
-4
\end{array}\right] \quad \mathbf{c}_{3}=\left[\begin{array}{c}
5 \\
8 \\
9 \\
-5
\end{array}\right]
$$

Example 2: determining the basis of null space

To determine the basis of null space, solve the equation $A \mathbf{x}=\mathbf{0}$.

$$
\left[\begin{array}{ccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 0 \\
2 & -6 & 9 & -1 & 8 & 2 & 0 \\
2 & -6 & 9 & -1 & 9 & 7 & 0 \\
-1 & 3 & -4 & 2 & -5 & -4 & 0
\end{array}\right] \sim E R O \sim\left[\begin{array}{ccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 0 \\
0 & 0 & 1 & 3 & -2 & -6 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The linear system correspond to the last augmented matrix is:

$$
\left\{\begin{aligned}
x_{1}-3 x_{2}+4 x_{3}-2 x_{4}+5 x_{5}+4 x_{6} & =0 \\
x_{3}+3 x_{4}-2 x_{5}-6 x_{6} & =0 \\
x_{5}+5 x_{6} & =0
\end{aligned}\right.
$$

from which we can extract the following:

$$
\begin{aligned}
x_{5} & =-5 x_{6} \\
x_{3} & =-3 x_{4}+2 x_{5}+6 x_{6}=-3 x_{4}+2\left(-5 x_{6}\right)+6 x_{6}=-3 x_{4}-4 x_{6} \\
x_{1} & =-3 x_{2}-4 x_{3}+2 x_{4}-5 x_{5}-4 x_{6} \\
& =-3 x_{2}-4\left(-3 x_{4}-4 x_{6}\right)+2 x_{4}-5\left(-5 x_{6}\right)-4 x_{6} \\
& =-3 x_{2}+14 x_{4}+22 x_{6}
\end{aligned}
$$

Example 2 (cont.)

Let $x_{2}=r, x_{4}=s$, and $x_{6}=t$, then the solution of $A \mathbf{x}=\mathbf{0}$ is:

$$
\begin{aligned}
& x_{1}=-3 x_{2}+14 x_{4}+22 x_{6}=-3 r+14 s+22 t \\
& x_{3}=-3 x_{4}-4 x_{6}=-3 s-4 t \\
& x_{5}=-5 t
\end{aligned}
$$

This can be written as vectors:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
-3 r+14 s+22 t \\
r \\
-3 s-4 t \\
s \\
-5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 r \\
r \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
14 s \\
0 \\
-3 s \\
s \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
22 t \\
0 \\
-4 t \\
0 \\
-5 t \\
t
\end{array}\right]=r\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
14 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
22 \\
0 \\
-4 \\
0 \\
-5 \\
1
\end{array}\right]
$$

The basis of the null space is:
$\mathbf{v}_{1}=(-3,1,0,0,0,0), \mathbf{v}_{2}=(14,0,-3,1,0,0), \mathbf{v}_{3}=(22,0,-4,0,-5,0)$

Rank and Nullity

In Example 1, we found that the row space and column space of matrix:

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right]
$$

both contain three vectors. Hence, they are both three-dimensional spaces.

Does this hold for other matrices?

Dimension of row space and column space

Theorem

The row space and the column space of a matrix A have the same dimension.

Proof.

- The elementary row operations do not change the dimension of the row space and column space of a matrix.
- Let R be any row echelon form of A, then:

$$
\begin{aligned}
\operatorname{dim}(\text { row space of } A) & =\operatorname{dim}(\text { row space of } R) \\
\operatorname{dim}(\text { column space of } A & =\operatorname{dim}(\text { column space of } R)
\end{aligned}
$$

- $\operatorname{dim}($ row space of $R)=$ the number of nonzero rows in R; and
- $\operatorname{dim}($ column space of $R)=$ the number of leading 1 's in R.

Since in R, the number of nonzero rows $=$ the number of leading 1 's, hence $\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)$.

Rank and nullity

The dimension of the row space (and column space) of a matrix A is called the rank of A, and denoted by $\operatorname{rank}(A)$.

The dimension of the null space of A is called the nullity of A, and denoted by nullity (A).

Theorem (Dimension Theorem for Matrices)
If A is a matrix with n columns, then:

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

Example

Find the rank and nullity of the matrix (size (4×6) :

$$
A=\left[\begin{array}{cccccc}
-1 & 2 & 0 & 4 & 5 & -3 \\
3 & -7 & 2 & 0 & 1 & 4 \\
2 & -5 & 2 & 4 & 6 & 1 \\
4 & -9 & 2 & -4 & -4 & 7
\end{array}\right]
$$

Solution:

- Rank

The reduced row echelon form of A is (verify it!):

$$
R=\left[\begin{array}{cccccc}
1 & 0 & -4 & -28 & -37 & 13 \\
0 & 1 & -2 & -12 & -16 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are two rows with leading 1 , then:

$$
\operatorname{dim}(\text { row space of } A)=\operatorname{dim}(\text { column space of } A)=2
$$

Example (cont.)

- Nullity

To find the nullity, solve the linear system: $\boldsymbol{A x}=\mathbf{0}$.
From the reduced echelon form of A, we obtain the following linear system:

$$
\left\{\begin{array}{r}
x_{1}-4 x_{3}-28 x_{4}-37 x_{5}+13 x_{6}=0 \\
x_{2}-2 x_{3}-12 x_{4}-16 x_{5}+5 x_{6}=0
\end{array}\right.
$$

Solving these equations for the leading variables yields:

$$
\begin{aligned}
& x_{1}=4 x_{3}+28 x_{4}+37 x_{5}-13 x_{6} \\
& x_{2}=2 x_{3}+12 x_{4}+16 x_{5}-5 x_{6}
\end{aligned}
$$

So, the solution of the system is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=r\left[\begin{array}{l}
4 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]_{22 / 28}\left[\begin{array}{c}
28 \\
12 \\
0 \\
1 \\
0 \\
0
\end{array}\right]_{0}\left[\begin{array}{c}
37 \\
16 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-13 \\
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Example (cont.)

Hence, the vectors:

$$
\left[\begin{array}{l}
4 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
28 \\
12 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
37 \\
16 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \text {, and }\left[\begin{array}{c}
-13 \\
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

form a basis for the solution space, then:

$$
\operatorname{nullity}(A)=4
$$

Remark. Observed that:

$$
\begin{aligned}
\operatorname{rank}(A)+\operatorname{nullity}(A) & =n \\
2+4 & =6
\end{aligned}
$$

Conclusion

Theorem
If A is an $(m \times n)$ matrix, then:

1. $\operatorname{rank}(A)=$ the number of leading variables in the general solution of $A \mathbf{x}=\mathbf{0}$.
2. nullity $(A)=$ the number of parameters in the general solution of $A \mathbf{x}=\mathbf{0}$.

Exercise:

Find the rank and nullity of the matrix:

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right]
$$

Solution of exercise

The reduced echelon form of the matrix is the following:

$$
R=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

There are three nonzero rows in the matrix, so $\operatorname{rank}(A)=3$.
By the "Dimension Theorem", $\operatorname{nullity}(A)=n-\operatorname{rank}(A)=6-3=3$

Solution of exercise (cont.)

To prove that $\operatorname{nullity}(A)=5$, we solve the linear system: $A \mathbf{x}=\mathbf{0}$.

$$
\left[\begin{array}{ccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 0 \\
2 & -6 & 9 & -1 & 8 & 2 & 0 \\
2 & -6 & 9 & -1 & 9 & 7 & 0 \\
-1 & 3 & -4 & 2 & -5 & -4 & 0
\end{array}\right] \sim E R O \sim\left[\begin{array}{ccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 0 \\
0 & 0 & 1 & 3 & -2 & -6 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From the reduced augmented matrix, we get the linear system:

$$
\left\{\begin{array}{r}
x_{1}-3 x_{2}+4 x_{3}-2 x_{4}+5 x_{5}+4 x_{6}=0 \\
x_{3}+3 x_{4}-2 x_{5}-2 x_{6}=0 \\
x_{5}+5 x_{6}=0
\end{array}\right.
$$

Solving the system for the leading 1's yields:

$$
\begin{aligned}
& x_{5}=-5 x_{6} \\
& x_{3}=-3 x_{4}-8 x_{6} \\
& x_{1}=3 x_{2}+14 x_{4}+57 x_{6}
\end{aligned}
$$

Solution of exercise (cont.)

Hence, the solution of the system can be written as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
3 r+14 s+57 t \\
s \\
-3 s-8 t \\
s \\
-5 t \\
t
\end{array}\right]=r\left[\begin{array}{l}
3 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
0 \\
1 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
57 \\
0 \\
-8 \\
0 \\
-5 \\
1
\end{array}\right]
$$

where $r, s, t \in \mathbb{R}$.
Hence, the basis of the null space of A is:

$$
\left\{\left[\begin{array}{l}
3 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
57 \\
0 \\
-8 \\
0 \\
-5 \\
1
\end{array}\right]\right\}
$$

which means that nullity $(A)=3$.

Equivalent statements

If A is an $(n \times n)$ matrix, then the following statements are equivalent.

1. A is invertible.
2. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
3. The reduced row echelon form of A is I_{n}.
4. A is expressible as a product of elementary matrices.
5. $A \mathbf{x}=\mathbf{0}$ is consistent for every $(n \times 1)$ matrix b.
6. $A \mathbf{x}=\mathbf{0}$ has exactly one solution for every $(n \times 1)$ matrix b.
7. $\operatorname{det}(A) \neq 0$.
8. The column vectors of A are linearly independent.
9. The row vectors of A are linearly independent.
10. The column vectors of A span \mathbb{R}^{n}.
11. The row vectors of A span \mathbb{R}^{n}.
12. The column vectors of A form a basis for \mathbb{R}^{n}.
13. The row vectors of A form a basis for \mathbb{R}^{n}.
14. A has rank n.
15. A has nullity 0 .

[^0]: $1 / 28$
 (C) Dewi Sintiari/CS Undiksha

[^1]: *Leading 1 is the leading entry in each nonzero row is 1 마

